

Antenatally Diagnosed (Renal) Abnormalities

Aditi Sinha

Division of Nephrology, Department of Pediatrics All India Institute of Medical Sciences, New Delhi

Antenatal Kidney anomalies: Common, often require evaluation

Antenatal hydronephrosis

~0.5-7.7% of all pregnancies: Varies by definition; gestation
17–30% bilateral; natural history depends on etiology
115% access require nectors bilateration

4-15% cases require postnatal intervention

Bright kidneys, usually cystic kidney diseases HNF1B related nephropathy

Congenital solitary kidney	1 in 1400 births
Unilateral renal agenesis	1 in 2000
Multicystic dysplastic kidney	1 in 4300

Other congenital anomalies of kidney & urinary tract

Causes of urinary tract dilatation

Etiology	All cases (%)	Significant ANH; Neonatal hydronephrosis
Transient hydronephrosis	41-88	
PUJ obstruction	10-30	35-45
Vesicoureteric reflux	10-20	20-30
VUJ obstruction, megaureter	5-10	10
Duplex kidneys (±ureterocele)	2-7	7-8
Posterior urethral valves	1-2	4-9
Multicystic dysplastic kidney	4-6	4-15

Others (urethral atresia, urogental sinus, prune belly, extrarenal tumors)

Pediatr Radiol 2004; 34:519-29

SFU Consensus Statement. J Pediatr Urol 2010; 6: 212-31

Evidence Based Guidelines for India

RECOMMENDATIONS 2013

Revised Guidelines on Management of Antenatal Hydronephrosis

Strength of evidence: The AAP model

Evidence Quality	Preponderance of Benefit or Harm	Balance of Benefit and Harm
A. Well designed RCTs or diagnostic studies on relevant population	Strong Recommendation	
B. RCTs or diagnostic studies with minor limitations;overwhelmingly consistent evidence from observational studies		(14 DAY)
C. Observational studies (case-control and cohort design)	Recommendation	Option
D. Expert opinion, case reports, reasoning from first principles	Option	No Rec
X. Exceptional situations where validating studies cannot be performed and there is a clear preponderance of benefit or harm	Strong Recommendation Recommendation	

Level 1. Recommendation

Level 2. Suggestion or option

Revision of guidelines: 2022-23

Expert Group Meetings

Online: October 2022- February 2023

Physical: 25 November 2022

Methods

- Literature searches: 2000-2022
- Evidence tables
- Rating of evidence
 - AAP model; GRADE-PRO
 - Consensus thru' discussions
- Revision of guidelines

#1: Defining Fetal Hydronephrosis

Maximum anteroposterior diameter (APD) of renal pelvis in transverse plane

- Α В Transverse diameter of kidney
- С AP diameter of renal cortex
- Anteroposterior diameter of renal pelvis D
- F Transverse diameter of renal pelvis.

PRENATAL DIAGNOSIS Prenat Diagn 2003; 23: 891-897. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/pd.693

Charts of fetal size: kidney and renal pelvis measurements

Cross-sectional survey 663 fetuses, 14-42 wk

6

>4 mm in 2nd trimester; >7 mm in 3rd trimester Determined by gestation, hydration, bladder distension Objective, reproducible, low intra- & inter- observer variation Disregards calyceal dilatation, parenchymal changes

Risk of pathology increases with severity

Meta-analysis: n=1308; 17 studies

Postnatal Pathology,	lology by Degree of A		Degree of ANH	Over	all risk 30 %	
% (95% CI)ª	Mild (N = 587)	Mild-Moderate $(N = 213)$	Moderate $(N = 235)$	Moderate-Severe $(N = 179)$	Severe (N = 94)	Trend Pb
Any Pathology	11.9 (4.5–28.0)	39.0 (32.6-45.7)	45.1 (25.3-66.6)	72.1 (47.6-88.0)	88.3 (53.7–98.0)	<.001
UPJ	4.9 (2.0-11.9)	13.6 (9.6–18.9)	17.0 (7.6–33.9)	36.9 (17.9-61.0)	54.3 (21.783.6)	<.001
VUR	4.4 (1.5-12.1)	10.8 (7.3-15.7)	14.0 (7.1-25.9)	12.3 (8.4-17.7)	8.5 (4.7-15.0)	.10
PUV	0.2 (0.0-1.4)	0.9 (0.2-3.7)	0.9 (0.2-2.9)	6.7 (2.5-16.6)	5.3 (1.2-21.0)	<.001
Ureteral obstruction	1.2 (0.2-8.0)	11.7 (8.1-16.8)	9.8 (6.3-14.9)	10.6 (7.4-15.0)	5.3 (1.4–18.2)	.025
Otherc	1.2 (0.3–4.0)	1.9 (0.7–4.9)	3.4 (0.5–19.4)	5.6 (3.0–10.2)	14.9 (3.6–44.9)	.002
PL P APD (mm) St APD (mm)	in T2 ≤7 in T3 ≤9		7-10 9-15		≥10 ≥15	lustering by unadjusted

^b Testing for trend in risks with increasing degree of ANH using logistic regression with robust SEs based on generalized estimating equations with a working independence correlation structure.
^c Includes prune belly syndrome, VATER syndrome, solitary kidney, renal mass, and unclassified.

12% for mild; 45% for moderate; 88-90% for severe ANH

Exceptions: VUR, distal ureteral obstruction

Pediatrics 2006; 118: 586-93

Society of Fetal Urology grading system for hydronephrosis

Good intra-rater, but modest inter-rater, reliability

Grade	Renal pelvis	Parenchymal thickness
0	Intact	Normal
I	Mild splitting	Normal
II	Moderate splitting (confined to renal border) +/- dilatation of major calyces	Normal
III	Marked (outside renal border, dilatation ofminor calyces)	Normal
IV	Pelvicalyceal dilatation	Thin

Segmental (4A); diffuse (4B) cortical thinning

Pediatr Radiol 1993; 23: 478-80; Keays, J Urol 2008; 180:1680

Defining fetal hydronephrosis

Urinary tract Dilation (UTD) classification: 2014

Multidisciplinary Consensus: 8 Academic Societies

American College of Radiology Society for Pediatric Urology Society for Fetal Urology Society for Pediatric Radiology American Institute of Ultrasound in Medicine American Society of Pediatric Nephrology Society for Maternal–Fetal Medicine Society of Radiologists in Ultrasound

	Antenatal		1	16–27 wooks	≥28 weeks	Postnatal
	UTD A1	UTD A2-3	Anterior-Posterior	<4 mm	<7 mm	<10 mm
Anterior Posterior Renal Pelvic Diameter (APRPD)	4 - <7 mm (<28w) 7 - <10 mm (≥28w)	≥ 7 mm (<28w) ≥ 10 mm (≥28w)	Renal Pelvis Diameter (APRPD) Calyceal dilation			
Calyces		OR Any Dilation	Central Peripheral Parenchymal thickness	No No Normal	No No Normal	No No Normal
Ureter		Any Dilation (with APRPD ≥ 4mm or calyceal dilation)	Parenchymal appearance Ureter (s)	Normal Normal	Normal Normal	Normal Normal
Parenchyma Abnl, Bladdder Abnl, or Oligohydramnios		Yes (with APRPD ≥ 4mm or colyceal dilation)	Bladder Unexplained oligohydramnios	Normal No	Normal No	Normal NA

Parenchyma abnormalities: cortical thinning, hyperechogenicity, or cystic dysplasia; indistinct corticomedullary differentiation

Bladder abnormalities: wall thickening, ureterocele, dilated posterior urethra

J Pediatr Urol 2014; 10: 982-99

#2A:Additional Evaluation

Lower urinary tract obstruction, renal dysplasia

*Posterior urethral valves, urethral atresia

2013

#2B: Additional Evaluation

Look for soft signs or major anomaly on level II ultrasound

Increased risk of fetal aneuploidy

Thickened nuchal fold Echogenic bowel Mild ventriculomegaly Echogenic focus in the heart Choroid plexus cyst Increased risk of nonchromosomal abnormalities Single umbilical artery

Enlarged cisterna magna Pyelectasis (APD 5-10 mm)* ANH is associated with an increased risk of aneuploidy if there is <u>one</u> major structural anomaly or any <u>one</u> <u>additional</u> soft sign

If any of above present, refer for genetic counseling and prenatal testing (karyotype, fetal ECHO) (1C)

Termination of pregnancy **not** recommended for unilateral or bilateral antenatal hydronephrosis, except in presence of extrarenal life threatening abnormality **(1D)**

SOGC Clinical Practice Guidelines. J Obstet Gynaecol Can 2005;27:592-612

#3:Frequency of evaluation

Unilateral hydronephrosis

Recommend at least one ultrasound in third trimester (1B)

Bilateral hydronephrosis

Suggest monitoring frequently, q 2-6 weeks, depending on gestation, severity, oligohydramnios (**2C**)

#4: Fetal intervention for LUTO

Perinatal survival

Author and year Favours no treatment **Favours intervention** Peto odds ratio and 95% confidence interval Favours no treatment Peto odds ratio and Author and year Favours treatment 95% confidence Interval Anumba et al 2005 2 37 (0 29, 19 39) Anumba et al 2005 0.15 (0.01, 2.77) Cromblehoimo ot al 1990 3.99 (1.14, 13.95) Crombleholme et al 1990 2,98 (0,28, 31,65) 5.62 (1.93, 16.37) Freedman et al 1996 Hutton et al 1997 0.21 (0.01, 6.08) Freedman et al 1996 0.64 (0.07, 5.67) Lipitz et al 1993 1.91 (0.35, 9.60) McFadven et al 1964 0.54 (0.02, 11.82) 0.12 (0.01, 5.84) Hutton et al 1997 McLorie et al 200 11.52 (0.94, 140.68) 0.22 (0.01, 5.77) Johnson et al 1994 9.65 (0.55, 169 75) Nonini et al 1991 Quintero et al 199 8.52 (0.62, 116.98) Lipitz et al 1993 0.42 (0.02, 9.83) 20.09 (0.31, 1283.97) Szaffick et al 1998 Wilkins of al 1987 28.03 (1.07, 735.05) McFadyen et al 1984 12 18 (0.22, 665, 65) 0.14 (0.01, 6.82) Wassor at all 1007 -> Pooled peto odds ratio (n = 7)0.67 (0.22, 2.00) Pooled peto odds ratio ($\theta = 12$) 3.82 (2.14, 6.84) Cochrana C - 12.15 P - 0.35 |2 - 0%, Z - 4.52 P < 0.0001 Good prognosis based on fetal urinalysis Cochrane Q = 5.87 P = 0.75, |2 = 0%, Z = 0.72 P = 0.47 2.93 (0.25, 33.94) Crombleholme et al 1990 2.06 (0.49, 8.70) Freedman et al 1990 10.31 (0.20, 541.25) Quinterp et al 1995 Good prognosis based on fetal urinalysis 2.58 (0.70, 8.45) Pooled peto odds ratio (n = 3) Crombleholme et al 1990 17.05 (0.87, 334.20) Cochrane Q = 0.57 P = 0.75, P = 0%, Z = 1.57 P = 0.12 Poor prognosis based on fetal urinalysis Freedman et al 1996 13 85 (1 25: 153 03) 0.92 (0.08, 10.55) Crombioholmo ot al 1990 57.55 (3.96, 832.00) Froodman of al 1006 Pooled peto odds ratio (n = 2)2.98 (0.45, 19.62) 28 19 (4 39, 158 25) Pooled peto odda ratio (n = 2) Cochrane Q = 0.60 P = 0.44, P = 0%, Z = 3.58 P = 0.0003 Cochrane Q = 2.21 P = 0.53 I^2 = 0%, Z = 1.13 P = 0.26 0.01 0.1 0.2 0.5 1 2 5 10 100 1000 1.00E+05 Peto odds ratio (95% confidence interval) 0.01 0102 05 1 2 5 10 100 1000 1.00E+05 Peto odds ratio (95% confidence interval)

Risks: Preterm labour; fetal loss; chorioamnionitis; catheter displacement **Long term renal function**: High risk of ESRD

Consider diagnostic and therapeutic interventions for suspected LUTO and oligohydramnios only at specialized centers, following one-to-one counseling (**2A**)

Postnatal survival with normal renal function

#5: Postnatal ultrasound

Meta-analysis, 25 studies

Risk of postnatal pathology

- 10.8% in infants with a normal postnatal ultrasound
- 54.7% in those with persisting hydronephrosis

Normal postnatal ultrasound has an NPV of 98.9% for UTI Hydronephrosis that resolves postnatally has satisfactory outcome

Postnatal ultrasound necessary in neonates with suspected LUTO

Considerations Neonatal dehydration Loss to follow up

2013

#5: Newborns with antenatal hydronephrosis (including with prenatal resolution) should have postnatal ultrasonography (1B)

	Timing
Suspected lower tract obstruction, oligohydramnios, solitary kidney, bilateral	Within 24-48 hr of birth (1C)
Unilateral hydronephrosis	Within 2-7 days (1C)

One ultrasound before discharge from the hospital

If first US normal: Confirm at 4-6 weeks of birth

Good correlation between higher grades of hydronephrosis and risk of pathology

Multiple studies; meta-analysis

29.6% with milder APD, SFU96.3% in severe hydronephrosis

5-times more likely to stabilize if associated with SFU grade 1-2 or APD <12 mm than with SFU grade 3-4 or APD >12 mm

> J Pediatr Urol 2011;7:128-36 Pediatr Nephrol 2006;21:218-24

#6: Grading the severity of Neonatal Hydronephrosis

APD based
No
Mild
Moderate
Severe

<**7 mm 7-10** mm **10**-15 mm ≥15 mm

Society of Fetal Urology grading system for hydronephrosis

Grade 1

Grade 2

Grade 3

Grade 4

Grade 0: no dilation (not shown). Grade 1: renal pelvis is only visualized. Grade 2: renal pelvis as well as a few, but not all, calyces are visualized. Grade 3: virtually all calyces are visualized. Grade 4: similar to Grade 3 but, when compared to the normal centralateral kidney, there is parenchymal thinning.

	Postnatal (>48h)			
	UTD P1	UTD P2	UTD P3	
Anterior Posterior Renal Pelvic Diameter (APRPD)	10 - <15 mm	≥ 15 mm	≥ 10 mm	
Calyces	OR Central Dilation	OR Peripheral Dilation	OR Any Dilation	
Ureter		OR ≥ 4 mm (with APRPD ≥ 10mm or colyceal dilation)		
Parenchyma Abnl, Bladdder Abnl, or Oligohydramnios			AND Yes	

#6: Grading the severity of Neonatal Hydronephrosis

2013

2023

Abnormal: SFU grade ≥ 1 or APD ≥ 7 mm or UTD P1-3

Mild if SFU 1-2 or APD 7-15 mm or UTD P1 **Severe** if SFU 3-4 or APD >15 mm or UTD P2-3

Suggest assessment of severity by the **UTD** classification rather than based on APD or proposed by SFU

Suggest including evaluation for calyceal or ureteric dilation, cortical cysts and enhanced renal echogenicity, and bladder wall abnormalities (2D)

#7: Postnatal monitoring

Recommend repeating ultrasound at 4-6 weeks for newborns with normal ultrasound in the first week of life (1C)

Recommend following neonates with isolated <u>mild</u> unilateral or bilateral **hydronephrosis** with sequential ultrasound alone, till resolution (1C)

Vesicoureteric reflux in 10-20% cases

Patients with two normal postnatal ultrasounds do not benefit from MCU

Pediatr Radiol 1997; Arch Dis Child Fetal Neonatal Ed 1999; Arch Dis Child 2002; Pediatr Nephrol 2005 20

#8: Micturating cystourethrography, if:

Renal dynamic scan: detects obstruction

Unilateral moderate-severe hydronephrosis, calyceal/ureteric dilatation Bilateral hydronephrosis

At ≥6 weeks; if MCU normal

Well-tempered diuresis renogram

Tc-MAG3 or Tc-DTPA

Differential function Severity of obstruction

Table of	Result Summary
Derement	

Sp Kic Kic Up F No F Me

rameters	Lett	Right	Iota
it Function (%)	3.029	97.0	
ney Counts (cpm)	1525.5	48835	50360
ney Depth (cm)	3.191	3.209	
take (%)	0.412	13.2	13.6
R (ml/min)	3.837	122.8	126.7
malized GFR (ml/min)			278.3
R Low Normal (ml/min)			90.0
an GFR (ml/min)			118.0

Table of Patient Farameters

#9: Renal dynamic scan

Recommend diuretic renography for infants with moderate to severe unilateral or bilateral hydronephrosis (UTD 2-3, SFU 3-4, APD >10-15 mm) who do not show VUR on MCU (1C)

Suggest diuretic renography for infants with hydronephrosis and dilated ureter(s) and no evidence of VUR (2C)

Use ^{99m}Tc-MAG3, ^{99m}Tc-EC or DTPA (**2D**)

Estimate differential function, inspect curve for pattern of drainage

Suggest to perform diuretic renography after 6-8 weeks of age (2D)

Suggest to repeat the procedure after 3-6 months if ultrasound shows worsening of pelvicalyceal dilatation (2D)

Posterior urethral valve

Ureterocele

Ectopic ureter with reflux, obstruction

PUJ obstruction with low differential function

Solitary kidney with obstruction

Bilateral obstruction

Grade III-V VUR with breakthrough febrile UTI or new scars despite antibiotic prophylaxis

2023: Guidance on management of PUV, PUJ obstruction

#11: Antibiotic prophylaxis

Recommend

Vigilance of all infants with antenatal hydronephrosis: Risk of UTI; need prompt management (**1B**)

✓ Postnatally confirmed moderate to severe hydronephrosis (UTD 2-3,

SFU 3-4; renal APD >10 mm) or dilated ureter while awaiting evaluation

(**1C**)

✓ All infants with VUR (by MCU), through the first year of life (1B)

ISPN 2022

<u>**Recommend</u> <1-yr-old with VUR III–V identified through screening** <u>*May consider* in <1-yr-old with VUR I–II identified through screening</u></u>

Guidelines on ANH: 2023 versus 2013

Definitions and grading: APD/SFU versus UTD

- Similar intensity of antenatal monitoring and screening; no role for fetal interventions
- Fewer indications for MCU & antibiotic prophylaxis
- Best practices for MCU and scintigraphy
- Management of individual entities refined

Congenital solitary kidney

Agenesis: Absent kidney absent on antenatal ultrasound at 18-22 weeks POG; confirmed postnatally

Aplasia: Rudimentary kidney on antenatal ultrasound at 18-22 weeks POG, with relative function <5% on postnatal DMSA

MCDK: Multiple non-communicating cysts of various sizes within a lobulated renal contour, pelvis and parenchyma not visible on postnatal ultrasound

Undefined CSK: Detection of an empty kidney fossa in the third trimester of pregnancy or after birth, with uncertain differential diagnosis

Congenital solitary kidney:

Additional renal and extrarenal anomalies in 1 in 3 cases

Author, year	Number of pts	CSK type (%)	Associated CAKUT, %	Total VUR, %	VUR grades III–V, %	UPJO, %	VUJO, %
Schreuder M. (2009) [1]*	3557	MCDK (100)	31.3 (of 2415 pts)	15 (of 2104 pts)	8	4.8 (of 2159 pts)	NR
Westland R. (2013) [2]*	1093	UKA (100)	32	24 (of 770 pts)	NR	6 (of 615 pts)	7 (of 605 pts)
La Scola C. (2016) [7]	<mark>146</mark>	MCDK (38), UKA (29), UKAP (16), Undefined (18)	21	11.5	10	2	3
Ross I. (2015) [42]	138	MCDK (63), UKA (37)	NR	36	17	NR	NR
Marzuillo P. (2017)[31]	322	MCDK (48), UKA (52)	14.6	9.3	5.6	0.3	4
Brown C. (2019) [43]	165	MCDK (100)	33	17 (of 77 pts)	NR	NR	NR
Blachman-Braun R. (2020) [41]	156	MCDK (100)	NR	16	6	NR	NR

				-									
	Number of pts	Genital	Cardiac	Musculo- skeletal	Inguinal hernia	Haemato- poietic	Eye	Nervous	Endocrine	Gastro- intestinal	Respiratory	Syndromes	Total***
Schreuder M. (2009) [1]*	1340	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	14.9%
Mansoor O. (2011) [34]	101	×	3%	-	-	~		(i n)	.	-		3%	6%
Westland R. (2013) [2]*	709	11%**	14%	13%	NR	NR	NR	NR	NR	16%	NR	NR	31%
La Scola C. (2016) [7]	146	9%	7.5%	7.5%	2%	1.4%	(<u>2</u>)	6.1%	5.5%	3.4%	1.4%	10.3%	26%
Groen in't Wood S. (2016) [50]	49	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	12.2%
Marzuillo P. (2017) [31]	322	3.4%	3.1%	0.3%	1.2%	0.6%	0.6%	-	.	-	-	1.2%	10.5%

Pediatric Nephrology 2022; 37: 2185–2207

Syndromes associated with congenital solitary kidney

yndrome AD, except:		Extrarenal manifestations	Genes	1
Branchio-oto-renal		Sensorineural hearing loss, preauricular pits, branchial cysts, and microtia	EYA1, SIX1, SIX5	88 39
DiGeorge		Congenital heart disease, hypocalcaemia, immu- nodeficiency, and neurocognitive disorders	22q11 deletion	1
Fraser AR		Cryptophthalmos, cutaneous syndactyly, occa- sionally malformations of the larynx, ambigu- ous genitalia, and mental retardation	FRASI, FREM2	- 55
Herlyn-Werner-Wunderlich (obstructed hemivagina a agenesis)	or OHVIRA nd ipsilateral renal	Obstructed hemivagina and uterus didelphys	Unknown	20
Kallmann 1	XR	Micropenis, bilateral cryptorchidism, and anosmia	KAL1	2015
Klinefelter Sporadic		Small, firm testis, gynaecomastia, azoospermia, and hypergonadotropic hypogonadism	47, XXY	
MURCS (Mayer-Rokitansky-Kuster-Hauser type 2)		Müllerian duct aplasia-hypoplasia and cervico- thoracic somite dysplasia	Unknown	12
Renal coloboma		Retinal and optic nerve coloboma	PAX2	2
Renal cysts and diabetes		Maturity-onset diabetes of the young type 5, hyperuricaemia, hypomagnesemia, and uterine malformations	HNF1B	13
Townes-Brocks		Thumb anomalies, imperforate anus, and senso- rineural hearing loss	SALL1	
VACTERL association	AR	Vertebral anomalies, anorectal malformations, cardiovascular disease, tracheoesophageal fistula, esophageal atresia, and limb defects	TRAPI	- 53
Williams-Beuren		Developmental delay, cardiovascular anomalies, mental retardation, and facial dysmorphology	7q11.23 deletion	3

Genetics in CAKUT

Genes	Clinical manifestations
HNF16	MCDK, renal hypoplasia, renal cysts and diabetes syndrome
PAX2	Renal hypoplasia, VUR, renal coloboma, FSGS
SIX1/SIX5	Renal hypodysplasia, VUR, branchio-oto-renal syndrome
SALL1	Townes-Brooks syndrome
GATA3	Renal dysplasia, Hypoparathyroidism-deafness-renal dysplasia syndrome
FREM2/ FRAS1	Renal agenesis, Fraser syndrome

Main extra-renal manifestations associated with monogenic CAKUT

CNS

Autism, Schizophrenia- 17q12 del, GATA3 Developmental delay- PAX2, PBX1 CNS malformations- PAX2, SALL1, PBX1 Cerebral infarction- GATA3 Basal ganglia calcifications- GATA3

Ears

Hearing loss- PAX2, EYA1, SALL1, PBX1 Dysplastic ear- EYA1, SALL1, PBX1

Genitourinary

Polycystic ovaries - *GATA3* Urogenital anomalies- *HNF1B, SALL1, GATA3* Cryptorchidism- *PBX1* Hypomagnesemia- *HNF1B*

Others

Branchial fistula or cysts- *EYA1* IUGR- *HNF1B, PBX1* Palate abnormalities- *EYA1* Skeletal defects- *PBX1, PAX2* Diaphragm malformations, lung hypoplasia- *PBX1*

HNF1B-related kidney disease: Diverse phenotypes

Family history (renal cysts and diabetes); hyperuricemia, hypomagnesemia

When to suspect HNF1B-related kidney disease?

HNF1B score

Characteristics	Item	Value	
Family history		+2	
Antenatal renal abnormalities	Uni/bilateral abnormality	+2	
	by renal echography		
Kidneys and urinary tract			
Left kidney	Hyperechogenicity	+4	
	Renal cysts	+4	
	Hypoplasia	+2	
	Multicystic and dysplastic kidney	+2	
	Urinary tract malformation	+1	
	Solitary kidney	+1	
Right kidney	Hyperechogenicity	+4	
	Renal cysts	+4	
	Hypoplasia	+2	
	Multicystic and dysplastic kidney	+2	
	Urinary tract malformation	+1	
	Solitary kidney	+1	
Electrolyte or uric acid disorders	Low serum Mg^{2+} (<0.7 mmol/l)	+2	
	Low serum K ⁺ (<3.5 mmol/l)	+1	
	Early-onset gout (>30 years of age)	+2	
Pathological findings	Oligomeganephronia or	+1	
	glomerular cysts		
Pancreas ^a	MODY or hypoplasia of tail and	+4	
	neck of the pancreas or pancreatic		
	exocrine insufficiency		
Genital tract	Genital tract abnormality ^b	+4	
Liver	Live test abnormalities of	+2	
	unknown origin ^c		

Kidney International 2014

Embryological classification of female genital malformations

Agenesis (or hypoplasia) of a urogenital ridge

Ipsilateral absence of kidney, ovary, Fallopian tube, hemiuterus & hemivagina

Mesonephric anomalies

(Absent opening in the urogenital sinus; non-development of corresponding ureteral bud; lack of inductor function of the mesonephric duct on uterus) Unilateral renal agenesis, ipsilateral blind vagina; +/- ectopic ureter (with renal hypoplasia) opening into the blind vagina

Isolated Mullerian anomalies

(Probably also induced by minor mesonephric defect)

- Paramesonephric ducts: uterine and/or tuba! anomalies
- Mullerian tubercle: agenesis or atresia of the vagina
- All paramesonephric derivatives: Rokitansky-Kuster Hauser syndrome
- Anomalies of urogenital sinus: Persistent urogenital membrane (imperforate hymen)
- Combinations of the above malformations

Adverse kidney outcomes in CSK quite common

10 studies; 2051 patients, assessed in childhood

Studies	GFR reduction (eGFR < 90)	Proteinuria#
Vu K.H 2008	10.7%	7.7%
Abou Jaoude P. 2011	11.4%	18%
Mansoor O. 2011	9.7%	17%
Hayes W.N 2012	43%	-
Westland R 2013	4%*	13%
Kolvek G 2014	11%*	7.4%
Siomou E 2014	44.7%	-
Le Scola C 2016	12%	4%
Marzuillo P 2017	1.3%	3.6%
Urisarri A 2018	2.3%*	3%

*eGFR reduction < 60 ml/1.73 m²/min; #Assessed using various definitions of albuminuria/ protein creatinine ratio

Hypertension in congenital solitary kidney

10 studies, 381 patients at average age 8-13 years

Clinic hypertension: 7-33% Ambulatory hypertension: 7-46% Masked hypertension: 4-26% White coat hypertension: 9-26% Abnormal dipping: 14-82%

Author, year	Ν	Age at ABPM (yrs)	OBP hypertension	ABPM hypertension	Masked hypertension	WCH	Abnormal dipping
Seeman T. (2001) [70]	25	7.8 (3.8–17.7)	8/25 (33%)	5/25 (20%)	1/25 (4%)	4/25 (16%)	5/25 (20%)
Mei-Zahav M. (2001) [85]	18	9.6±3.9	NR	NR	NR	NR	0/18
Seeman T. (2006) [28]	15	10.0 (4–17)	5/15 (33%)	1/15 (7%)	0/15	4/15 (26%)	2/15 (14%)
Dursun H. (2007) [71]	44	8.3±4.2	NR	10/44 (23%)	NR	NR	13/44 (29.5%)
Westland R. (2014) [72]	28	12.5 ± 3.6	2/28 (7%)	7/28 (25%)	5/28 (18%)	0/28	8/28 (29%)
Tabel Y. (2015) [73]	44	10.9 ± 3.3	NR	19/44 (43%)	NR	NR	NR
Lubrano R. (2017) [74]	38	About 14.5	11/38 (29%)	11/38 (29%)	0/38	0/38	NR
Zambaiti E. (2018) [32]	50	9.5 ± 4.2	10/50 (20%)**	23/50 (46%)***	NR	NR	41/50 (82%)
La Scola C. (2020) [37]	81	11.8 ± 4.7	13/81 (16%)	27/81 (33.3%)	21/81 (25.9%)	7/81 (8.6%)	51/81 (64%)
Kasap-Demir B. (2021)[75]	36	11 ± 4.75	10/36 (28%)	7/36 (19%)	5/36 (14%)	8/36 (22%)	NR

Antenatally detected congenital solitary kidney

Antenatal

Classification, based on T2 and T3 ultrasound (Agenesis, hypoplasia or MCDK) *Level II ultrasound* for extrarenal anomalies; syndromic findings *If abnormal:* Referral to consider *fetal karyotype* or *microarray If abnormal:* Referral to consider termination of pregnancy

Postnatal

Physical exam for extrarenal anomalies; syndromic findings Follow-up ultrasound at 1 month

Contralateral kidney: Compensatory hypertrophy, echogenicity, hydronephrosis, cysts, ureter, bladder; genital tract anomalies *If abnormal:* Consider **micturating cystourethrography Risk stratification**

After thelarche and before menarche, in girls Pelvic ultrasound

If abnormal: III D ultrasound or magnetic resonance imaging

Congenital solitary kidney (CSK): Recommendations of the Italian Society of Pediatric Nephrology 2022

Low risk	Medium risk	High risk
CSK with	CSK without compensatory	Decreased GFR
compensatory	enlargement and/or	and/or proteinuria,
enlargement	additional CAKUT	and/or hypertension

	Low risk*	Medi	High risk*	
		Without CAKUT	With ipsilateral CAKUT	
Setting	Primary pediatric care ¹	Pediatric nephrologist	¹ /pediatric nephrology unit	Pediatric nephrology unit
Ultrasound ²	Yearly until 3 years of age, then every 5 years	Yearly until 3 years of age, then every 3 to 5 years	Further work-up depending on additional ipsilateral CAKUT findings	According to kidney function and clinical data
Proteinuria by urinalysis ³	Yearly until 3 years of age, then every 5 years	Yearly		
Office Blood pressure	Yearly \geq 3 years	Yearly		
Serum creatinine/eGFR	Not necessary	Yearly		
Abdominopelvic ultrasound in girls	Between thelarche and menarche	Between thela	rche and menarche	Between thelarche and menarche

Pediatric Nephrology 2022; 37: 2185-2207